MATH 623 Chapter 0 Exercises

- 1. Suppose that S is a vector space over field \mathbb{F} , and S_1, S_2 are both subspaces of S. Prove that $S_1 + S_2$ is a subspace of S.
- 2. Suppose that S is a vector space over field \mathbb{F} , and S_1, S_2 are both subspaces of S. Prove that $S_1 \cap S_2$ is a subspace of S.
- 3. Consider the vector space \mathbb{R}^2 . Find two subspaces S_1, S_2 such that $S_1 \cup S_2$ is not a subspace.
- 4. Prove that every nonempty sublist of an independent list of vectors is again independent.
- 5. Prove that every superlist of a dependent list of vectors is again dependent.
- 6. For matrix $A \in M_{m,n}(\mathbb{F})$, prove that the rowspace and nullspace are both subspaces of \mathbb{F}^n .
- 7. Find an infinite-dimensional vector space V, with two proper nontrivial subpaces V_1, V_2 such that V_1 is finite-dimensional and V_2 is infinite-dimensional.
- 8. Set $P_2(t)$ to be the set of all polynomials of degree at most 2, in variable t, with real coefficients. Prove that $P_2(t)$ is isomorphic to \mathbb{R}^3 .
- 9. Let $P_2(t)$ be as in (8). Prove that $T: P_2(t) \to P_2(t)$ given by $T(f(t)) = t \frac{df(t)}{dt}$ is a linear transformation.
- 10. Let T be as in (9). Find its rank and nullity.
- 11. For matrices A, B where AB is defined, prove that $(AB)^T = B^T A^T$ and $(AB)^* = B^* A^*$.
- 12. For complex-valued matrix $A = [a_{ij}]$, prove that $A^* = A^T$ if and only if $a_{ij} \in \mathbb{R}$ for all i, j.
- 13. For complex-valued matrix $A = [a_{ij}]$, prove that $A + A^T$ is symmetric, $A + \overline{A}$ is real, and $A + A^*$ is Hermitian.
- 14. Calculate the determinant and permanent of $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.
- 15. Calculate the inverse of $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.
- 16. Prove that the inverse of an elementary matrix is elementary.
- 17. For $A, B \in M_n(\mathbb{F})$, prove that AB is invertible if and only if both A, B are invertible.
- 18. Suppose that square matrix A has RREF of I. Prove that A may be written as the product of elementary matrices.
- 19. If $A \in M_{m,n}(\mathbb{F})$, prove that rank $A \leq \min(m, n)$.
- 20. If $A \in M_{m,n}(\mathbb{F})$, and $B \in M_{n,n}(\mathbb{F})$, prove that rank $A \ge \operatorname{rank} AB$.
- 21. If $A \in M_{m,n}(\mathbb{F})$, and $B \in M_{n,n}(\mathbb{F})$ is nonsingular, prove that rank $A = \operatorname{rank} AB$.
- 22. If $A \in M_{m,n}(\mathbb{C})$, prove that rank $A = \operatorname{rank} A^*A$.
- 23. Prove that if square matrix A has a left inverse, then it also has a right inverse, and they are the same.
- 24. Let $V = \mathbb{C}^2$. Define $\langle x, y \rangle = y^* \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} x$. Prove that this defines an inner product on V.
- 25. With $V, \langle \cdot, \cdot \rangle$ as in (24), calculate the angle between x = (-1, 2) and y = (1, 1).
- 26. With $V, \langle \cdot, \cdot \rangle$ as in (24), use Gram-Schmidt starting with $\{e_1, e_2\}$ to find an orthonormal basis for V.
- 27. Suppose S is a subspace of \mathbb{C}^n . Prove that $(S^{\perp})^{\perp} = S$.
- 28. Suppose S_1, S_2 are subspaces of \mathbb{C}^n . Prove that $(S_1 + S_2)^{\perp} = S_1^{\perp} \cap S_2^{\perp}$.
- 29. Calculate $C_2(A)$ for $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.
- 30. Calculate $C_2(A^2)$ for $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, and verify that $C_2(A^2) = C_2(A)^2$.
- 31. Calculate the adjugate of $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.