MATH 623 Chapter 0 Exercises

1. Suppose that S is a vector space over field \mathbb{F}, and S_{1}, S_{2} are both subspaces of S. Prove that $S_{1}+S_{2}$ is a subspace of S.
2. Suppose that S is a vector space over field \mathbb{F}, and S_{1}, S_{2} are both subspaces of S. Prove that $S_{1} \cap S_{2}$ is a subspace of S.
3. Consider the vector space \mathbb{R}^{2}. Find two subspaces S_{1}, S_{2} such that $S_{1} \cup S_{2}$ is not a subspace.
4. Prove that every nonempty sublist of an independent list of vectors is again independent.
5. Prove that every superlist of a dependent list of vectors is again dependent.
6. For matrix $A \in M_{m, n}(\mathbb{F})$, prove that the rowspace and nullspace are both subspaces of \mathbb{F}^{n}.
7. Find an infinite-dimensional vector space V, with two proper nontrivial subpaces V_{1}, V_{2} such that V_{1} is finitedimensional and V_{2} is infinite-dimensional.
8. Set $P_{2}(t)$ to be the set of all polynomials of degree at most 2 , in variable t, with real coefficients. Prove that $P_{2}(t)$ is isomorphic to \mathbb{R}^{3}.
9. Let $P_{2}(t)$ be as in (8). Prove that $T: P_{2}(t) \rightarrow P_{2}(t)$ given by $T(f(t))=t \frac{d f(t)}{d t}$ is a linear transformation.
10. Let T be as in (9). Find its rank and nullity.
11. For matrices A, B where $A B$ is defined, prove that $(A B)^{T}=B^{T} A^{T}$ and $(A B)^{*}=B^{*} A^{*}$.
12. For complex-valued matrix $A=\left[a_{i j}\right]$, prove that $A^{*}=A^{T}$ if and only if $a_{i j} \in \mathbb{R}$ for all i, j.
13. For complex-valued matrix $A=\left[a_{i j}\right]$, prove that $A+A^{T}$ is symmetric, $A+\bar{A}$ is real, and $A+A^{*}$ is Hermitian.
14. Calculate the determinant and permanent of $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.
15. Calculate the inverse of $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.
16. Prove that the inverse of an elementary matrix is elementary.
17. For $A, B \in M_{n}(\mathbb{F})$, prove that $A B$ is invertible if and only if both A, B are invertible.
18. Suppose that square matrix A has RREF of I. Prove that A may be written as the product of elementary matrices.
19. If $A \in M_{m, n}(\mathbb{F})$, prove that $\operatorname{rank} A \leq \min (m, n)$.
20. If $A \in M_{m, n}(\mathbb{F})$, and $B \in M_{n, n}(\mathbb{F})$, prove that $\operatorname{rank} A \geq \operatorname{rank} A B$.
21. If $A \in M_{m, n}(\mathbb{F})$, and $B \in M_{n, n}(\mathbb{F})$ is nonsingular, prove that $\operatorname{rank} A=\operatorname{rank} A B$.
22. If $A \in M_{m, n}(\mathbb{C})$, prove that $\operatorname{rank} A=\operatorname{rank} A^{*} A$.
23. Prove that if square matrix A has a left inverse, then it also has a right inverse, and they are the same.
24. Let $V=\mathbb{C}^{2}$. Define $\langle x, y\rangle=y^{*}\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right) x$. Prove that this defines an inner product on V.
25. With $V,\langle\cdot, \cdot\rangle$ as in (24), calculate the angle between $x=(-1,2)$ and $y=(1,1)$.
26. With $V,\langle\cdot, \cdot\rangle$ as in (24), use Gram-Schmidt starting with $\left\{e_{1}, e_{2}\right\}$ to find an orthonormal basis for V.
27. Suppose S is a subspace of \mathbb{C}^{n}. Prove that $\left(S^{\perp}\right)^{\perp}=S$.
28. Suppose S_{1}, S_{2} are subspaces of \mathbb{C}^{n}. Prove that $\left(S_{1}+S_{2}\right)^{\perp}=S_{1}^{\perp} \cap S_{2}^{\perp}$.
29. Calculate $C_{2}(A)$ for $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.
30. Calculate $C_{2}\left(A^{2}\right)$ for $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$, and verify that $C_{2}\left(A^{2}\right)=C_{2}(A)^{2}$.
31. Calculate the adjugate of $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.
